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1 Baseline Model Details

1.1 Household

The representative household has the following utility function.

E0

∞∑
t=0

βtZt

[
log
(
Ct − hC̄t−1

)
− χN

1+ϕ
t

1 + ϕ

]

where Ct and Nt represent consumption and labor, and C̄t−1 is the aggregate consumption at time

t−1. Zt ≡ exp(σzzt) is a preference shock where zt follows an exogenous process. The household is

in charge of making consumption/saving decisions. The budget constraint it faces is the following

PtCt +Bt+1 = Wt(i)Nt +Rt−1Bt + Tt

where Tt is profits from firms, Bt is bond holdings, Rt−1 is the nominal interest rate, and Wt denotes

the nominal wage. The Euler equation of the representative household is given by,

1 = Et
{
β
Zt+1

Zt

MUt+1

MUt

Rt
Πt+1

}
MUt =

1

Ct − hC̄t−1

where Πt is the gross inflation rate and MUt is the marginal utility from consumption.

1.2 Firms

Final good producers combine intermediate goods to produce the final goods with technology,

Yt =

(� 1

0
Y

ε−1
ε

kt dk

) ε
ε−1

Cost minimization yields the following demand for intermediate goods,

Ykt =

(
Pkt
Pt

)−ε
Yt
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where

Pt =

(� 1

0
P 1−ε
kt dk

) 1
1−ε

Intermediate good producers produce a continuum of varieties denoted by k. The technology is,

Ykt = At

(� 1

0
Nkt(i)

εw−1
εw di

) εw(1−α)
εw−1

where At is an exogenous TFP shock that follows the process,

logAt = gy + logAt−1 + σaεat

The labor cost minimization problem is,

min

� 1

0
Wt(i)Nkt(i)di

s.t.

Nkt =

(� 1

0
Nkt(i)

εw−1
εw di

) εw
εw−1

Implying the FOC,

Nkt(i) =

(
Wt(i)

Wt

)−εw
Nkt

where,

Wt =

(� 1

0
Wt(i)

1−εwdi

) 1
1−εw
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Moreover, the firm chooses its price solving this problem,

max PktYkt −Wt

(
Ykt
At

) 1
1−α

s.t.

Ykt =

(
Pkt
Pt

)−ε
Yt

the resulting FOC in a symmetric equilibrium is,

Pt =
ε

ε− 1
MCt

where,

MCt =
1

1− α
Wt

A
1

1−α
t

Y
α

1−α
t

1.3 Labor Unions

There is a continuum (in the unit interval) of labor unions each one specialized in a given type of

labor i ∈ [0, 1]. They face the downward sloping demand from firms,

Nt(i) =

(
Wt(i)

Wt

)−εw
Nt

They maximize the discounted net flow of utility from working. They are subject to a Calvo (1983)

type constraint to adjust nominal wages. We assume wages grow at rate gy when they are not

adjusted (this is just to simplify detrending and not strictly necessary). The problem of the union

is shown below,

max
W ∗
t (i)

Et
∞∑
k=0

(βθ)kZt+k

[
W ∗t (i)(1 + gy)

kNt+k(i)MUt+k
Pt+k

− χ
N1+ϕ
t+k (i)

1 + ϕ

]

s.t.

Nt+k(i) =

(
W ∗t (i)(1 + gy)

k

Wt+k

)−εw
Nt+k

4



And it implies a FOC,

Et
∞∑
k=0

(βθ)kZt+k

[
(1− εw)

W ∗t (i)(1 + gy)
k

Pt+k
+ εw

χNt+k(i)
ϕ

MUt+k

]
Nt+k(i)MUt+k = 0

Given that all unions face the same problem, all of them set the same nominal wage when they are

able to: W ∗t = W ∗t (i). The average nominal wage is given by,

Wt =

(� 1

0
Wt(i)

1−εwdi

) 1
1−εw

=
(
θ (Wt−1(1 + gy))

1−εw + (1− θ)(W ∗t )1−εw
) 1

1−εw

1.4 Market Clearing and Monetary Authority

Up to a first order approximation, goods market clearing is represented by

Yt = AtN
1−α
t = Ct

Also, bonds market clearing is,

Bt = 0

Finally, to close the model we assume a Taylor rule,

Rt = RssΠ
φπ
t exp(σiνt)

where σiνt is a normal iid shocks, and Rss is the steady state gross nominal interest rate.

2 Model with Government Spending Details

Let’s consider the case adding government spending shocks. In particular, assume that government

consumption follows the rule,
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log

(
Gt

(1 + gy)t

)
= (1− ρg) log(Ḡ) + ρg log

(
Gt−1

(1 + gy)t−1

)
+ ρgy log

(
Yt−1/Ȳ

(1 + gy)t−1

)
+ σgεgt

in a log-linearized version,

gt = ρggt−1 + ρgyyt−1 + σgεgt

Also, now the resource constraint is,

yt =
C

Y
ct +

G

Y
gt

Introducing these two modifications to the baseline case we get the following model,

−it = −mut + Etmut+1 − Etπt+1 + σz (Etzt+1 − zt)

mut = − 1 + gy
1 + gy − h

(
Y

C
yt −

G

C
gt

)
+

h

1 + gy − h

(
Y

C
yt−1 −

G

C
gt−1

)
πwt = −κwµwt + βEtπwt+1

it = φππt + σiνt

µwt =
1 + ϕ

1− α
at −

α+ ϕ

1− α
yt +mut

1

1− α
(at − at−1)− α

1− α
(yt − yt−1) = πwt − πt

at = at−1 + σaεat

gt = ρggt−1 + ρgyyt−1 + σgεgt

Taking first differences we get the system of equations used to infer the method to obtain
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potential GDP,

−φππt − σiνt = Et∆mut+1 − Etπt+1 + σz (Etzt+1 − zt) (2.1)

∆mut = − 1 + gy
1 + gy − h

(
Y

C
∆yt −

G

C
∆gt

)
+

h

1 + gy − h

(
Y

C
∆yt−1 −

G

C
∆gt−1

)
(2.2)

πwt = −κwµwt + βEtπwt+1 (2.3)

µwt − µwt−1 = −
(

1 + gy
1 + g − h

Y

C
+
α+ ϕ

1− α

)
∆yt +

h

1 + gy − h
Y

C
∆yt−1 +

1 + ϕ

1− α
σaεat

1 + gy
1 + gy − h

G

C
∆gt −

h

1 + gy − h
G

C
∆gt−1 (2.4)

− α

1− α
∆yt = πwt − πt −

1

1− α
σaεat (2.5)

∆gt = ρg∆gt−1 + ρgy∆yt−1 + σg (εgt − εgt−1) (2.6)

3 More Extensions

3.1 Government Spending

In this section, we test how the method and results change when we incorporate government

spending as a factor affecting potential GDP. To do so we include in our baseline model a fiscal

authority that collects lump-sum taxes, follows a balanced budget, and decides the amount of

log government spending gt (as log-deviation from the detrended steady state) according to the

following fiscal rule,

gt = ρggt−1 + ρgyyt−1 + σgεgt (3.7)

where yt−1 represents detrended lagged GDP and εgt is a standard normally distributed government

spending shock. This is a common way of modeling fiscal policy in DSGE models which follows

Blanchard and Perotti (2002) and assumes that gt is only affected by lags of macroeconomic vari-

ables. This assumption is justified by the usual legislative and implementation lags related to fiscal

policy.

The rest of the baseline model remains unchanged. It can be shown that potential GDP is now
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given by,

∆ypt = θg3∆gpt−1 + θg2σg∆εgt + θg1∆ypt−1 + θg0εat (3.8)

with,

θg0 ≡
1+ϕ
1−ασa

1+gy
1+gy−h + α+ϕ

1−α
θg1 ≡

h
1+gy−h

Y
C + ρgy

1+gy
1+gy−h

G
C

1+gy
1+gy−h

Y
C + α+ϕ

1−α

θg2 ≡
1+gy

1+gy−h
G
C

1+gy
1+gy−h

Y
C + α+ϕ

1−α
θg3 ≡

−h
1+gy−h

G
C + ρg

1+gy
1+gy−h

G
C

1+gy
1+gy−h

Y
C + α+ϕ

1−α

where Y
C and G

C are the steady-state output-consumption and government spending-consumption

ratios. Moreover, the growth of potential government spending is given by,

∆gpt = ρg∆g
p
t−1 + ρgy∆y

p
t−1 + σg∆εgt (3.9)

It is clear that potential output now depends on productivity and fiscal policy shocks. The

reason why government spending affects potential output has to do with labor supply wealth effects.

Specifically, an increase in government spending means higher taxes and lower consumption under

flexible prices. This in turn implies lower demand for leisure and a shift to the right of labor supply

increasing potential hours and GDP.

Notice that fiscal rule (3.7) is a model equation that depends only on observables: government

spending and GDP. Hence, we can estimate the rule’s parameters ρg and ρgy, and the fiscal policy

shocks σgε
g
t through a simple OLS estimation of the equation. This is actually a first necessary

step to get potential GDP estimates using our method. After estimating the fiscal rule, it is

straightforward to infer potential GDP using the result in the following proposition,

Proposition 1. Using a model with wage rigidities and government spending, θg0, θg1, θg2, θg3 and
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εat in equation (3.8) can be estimated from the following system,

∆yt

µwt

 = B



∆yt−1

µwt−1

∆gt−1

σgεgt

σgεgt−1


+ C

εat
ξt

 (3.10)

where ξt is a weighted average of demand shocks. In particular, letting cij and bij be the elements

of matrices B and C,

θg0 = c11 −
c21c12

c22
θg1 = b11 −

b21c12

c22

θg2 = b13 −
b23c12

c22
θg3 = b14 −

b24c12

c22

And εat can be calculated using forecast errors and C.

Proof. See Appendix 4.

As it is clear from the previous proposition, the baseline method is modified by simply adding

three data series in the system: lagged government spending growth rate, and current and lagged

government spending shocks. Note that, as it is typical in DSGE models, we assume that fiscal

shocks are not subject to measurement error. As a consequence, if measurement error is important,

our estimates of potential GDP can be significantly biased. Moreover, Blanchard and Perotti (2002)

identification strategy can introduce an additional bias if fiscal shocks εgt are anticipated or not

totally unexpected.1 Due to these concerns, we present the results in this section as a robustness

check and the reader should take into account the mentioned shortcomings.

We present the results in figure 1. The earlier results are broadly confirmed after incorporating

government spending in our baseline model. There is a high correlation between our estimated

output gap and the one estimated by the CBO. Further, we observe an important difference between

CBO’s and our series during and after the Great Recession. As before, our results imply an increase

1See Ramey (2011).
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in potential GDP during and right after the Great Recession but a poor potential growth afterwards.

Conversely, CBO’s estimates suggest a slowdown in the growth rate during and after the recession

with a subsequent acceleration.

A new result that emerges in this case is the large difference between this new series and the

one estimated using the baseline method from 1950 until around 1975. This difference has to do

with large government spending shocks associated with the Korean and Vietnam wars. According

to our estimates, these large fiscal shocks explain part of the increase in GDP that was previously

attributed to TFP shocks in our baseline method. Hence, part of the increase on GDP that was

previously associated with positive TFP shocks is now explained by government spending shocks.

Given that TFP shocks are the main factors affecting potential GDP, this change in the relative

importance of the shocks has an impact on estimated potential GDP. Particularly, our method

including fiscal shocks predicts a lower TFP and potential GDP growth during this period, which

are associated with higher output gaps.

3.2 A COVID-19 labor supply shock

The COVID-19 pandemic and related lockdown was a combination of important demand and supply

shocks. One the one hand, demand decreased because of the increasing uncertainty about the future

evolution of the pandemic and the lockdown measures that forbade consumption of certain services.

On the other, supply decreased because lockdown measures reduced labor supply in the economy.2

The baseline method and extensions we have developed so far are able to separately identify

productivity shocks and a linear combination of “demand shocks” (ξt), but they implicitly assume

no labor supply shocks. The reason behind this assumption is that exogenous labor supply changes

are typically related to demographic or institutional issues that are relevant at low frequency only.

Therefore, we considered that labor supply shocks were included in the low-frequency component

of the wage markup series. As a result, we assumed we were dropping labor supply shocks from

the analysis after detrending the wage markup series. Including the COVID-19 pandemic and its

negative short-run labor supply shock in our analysis forces us to modify our assumptions, at least

for the observations after 2020Q1 in the US.

2Brinca et al. (2020) find that the impact of COVID in the labor market can be mostly explained by labor supply
shocks.

10



Figure 1: Including Government Spending: Output Gap and Potential GDP
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(b) Potential GDP during Great Recession

Note: Panel (a) shows the output gap computed using the method assuming wage rigidities and including

government spending in the underlying model. We also include CBO’s output cap for comparison. Panel (b)

shows potential GDP series computed with the same method. Light blue lines in panel (b) highlight different

estimates using different samples starting at different dates, using as starting dates quarters from 1950Q1

to 1990Q1. The thick dark blue line represents the median value across all estimates. See data appendix ??

for details.

We modify the baseline model and incorporate a COVID-19 labor supply shock χt to analyze the

COVID-19 recession. In particular, we assume that the disutility of labor is exogenously affected

by χt and that the changes in this parameter are stochastic and iid, ∆χt = σχεχt. Keeping the rest

of the model unchanged, it is easy to show that potential GDP is now given by,3

∆ypt = θ1∆ypt−1 + θ0εat + θ2∆χt (3.11)

where θ0 and θ1 are defined as in the paper, and θ2 ≡ −
(

1+gy
1+gy−h + α+ϕ

1−α

)−1
. Hence, we now have to

estimate an additional parameter, θ2, and a new shock series ∆χt. The next proposition describes

how to estimate the θ’s and productivity shocks εat with this model.

Proposition 2. θ0, θ1, θ2 and εat in equation (3.11) can be estimated from the following Structural

3See appendix 5 for details.
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Vector Autoregression (SVAR) estimation,

∆yt

µwt

 = B

∆yt−1

µwt−1

+ C

εat
ξt

 (3.12)

where ∆yt is the GDP growth rate and ξt is a weighted average of demand shocks and the labor

supply shock. In particular, letting cij and bij for i, j = {1, 2} be the elements of the 2× 2 matrices

B and C,

θ0 = c11 −
c21c12

c22
θ1 = b11 −

b21c12

c22

θ2 =
c12

c22

And εat can be calculated using forecast errors and C.

Proof. See Appendix 5.

Proposition 2 tells us that the SVAR estimation with labor supply shocks is the same as the one

of the baseline method. We need to estimate the baseline SVAR, and after doing so we can recover

the θ’s and εat in equation (3.11). After running this estimation the only remaining step to estimate

∆ypt is to infer COVID-19 labor-supply shocks (∆χt) from the data. This last step is obviously

challenging. However, using our structural model and introducing reasonable assumptions we can

actually put discipline in our estimates.

Using the labor supply equation from the household and the definition of µwt in (??) we get the

following expression,4

µwt = ϕ(lt − nt) + χt

where lt is total hours supplied by the household, nt is total hours worked and χt is the labor

disutility shock. The last expression suggests a clear strategy to estimate labor supply shocks.

Assuming a value for the inverse Frisch elasticity we can use data on wage markups, labor supply

4See Appendix 5 for details.
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and hours worked to obtain χt as a residual. This is a simple method, but it also has clear

shortcomings. First, there is no data available on hours supplied and, therefore, we need to use as

proxy for lt − nt the log-difference between the labor participation rate and the employment ratio.

This is a reasonable way to proceed but it might add significant measurement error. Second, labor

disutility shocks and wage markup shocks enter in exactly the same way in the household labor

supply equation. Hence, if there are exogenous changes in the market power of labor unions, our

estimate of χt may be contaminated by these other shocks.

Figure 2 shows the data series for ∆µwt −ϕ(∆lt−∆nt) assuming ϕ = 1, the same value we assumed

to compute µwt .5 From the figure we can see a large increase in the series after 2020Q1 followed

by an important reduction, which is correlated with the lockdown severity. Notice that before the

pandemic there are changes in the series, but these are an order of magnitude smaller. Taking

into account the mentioned shortcomings regarding the estimation of ∆χt, we take a conservative

approach and assume that fluctuations in ∆µwt − ϕ(∆lt −∆nt) before the pandemic are explained

by either measurement error or short-run wage markup shocks and, therefore, do not represent

exogenous changes in labor disutility. In addition, we assume that the large changes in ∆µwt −

ϕ(∆lt−∆nt) after 2020Q1 are entirely explained by fluctuations in ∆χt. Hence, our labor disutility

shock is ∆χt = 0 before the pandemic and ∆χt = ∆µwt − ϕ(∆lt −∆nt) since 2020Q1.

Figure 3 shows potential GDP estimates extending the analysis up to 2020Q4 and incorporating

the COVID-19 shock to potential GDP.6 The results show a significant drop in potential GDP as

a consequence of the pandemic. However, the decrease in potential GDP is less pronounced than

the decrease in GDP and, as a cosequence, the output gap became negative in 2020. As shown in

the figure, the results are robust to picking different samples with different starting points.

Labor supply shocks play an important role in the sudden decrease and posterior increase in

potential GDP. This implies that computation of potential output during the pandemic requires

incorporating this kind of shocks. This simple extension shows that it is indeed simple to add

high-frequency changes in labor supply related to COVID-19.

5Results are qualitatively similar if we assume other values for ϕ.
6Given the magnitude of the COVID shocks, we excluded the year 2020 from the SVAR estimation.
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Figure 2: Data series for ∆µwt − ϕ(∆lt −∆nt)
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4 Proof of proposition 1

The log-linearized version of the model in first-differences is given by the following system of

equations.

−φππt − σiνt = Et∆mut+1 − Etπt+1 + σz (Etzt+1 − zt) (4.1)

∆mut = − 1 + gy
1 + gy − h

(
Y

C
∆yt −

G

C
∆gt

)
+

h

1 + gy − h

(
Y

C
∆yt−1 −

G

C
∆gt−1

)
(4.2)

πwt = −κwµwt + βEtπwt+1 (4.3)

µwt − µwt−1 = −
(

1 + gy
1 + g − h

Y

C
+
α+ ϕ

1− α

)
∆yt +

h

1 + gy − h
Y

C
∆yt−1 +

1 + ϕ

1− α
σaεat

1 + gy
1 + gy − h

G

C
∆gt −

h

1 + gy − h
G

C
∆gt−1 (4.4)

− α

1− α
∆yt = πwt − πt −

1

1− α
σaεat (4.5)

∆gt = ρg∆gt−1 + ρgy∆yt−1 + σg (εgt − εgt−1) (4.6)
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Figure 3: Potential GDP during COVID-19
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Note: Light blue lines highlight different estimates using different samples starting at different dates, using

as starting dates quarters from 1950Q1 to 1990Q1. The thick dark blue line represents the median value

across all estimates. See data appendix ?? for details.

The first equation in the system to be estimated comes from combining (4.4) and (4.6),

µwt − µwt−1 = −
(

1 + gy
1 + g − h

Y

C
+
α+ ϕ

1− α

)
∆yt +

[
h

1 + gy − h
Y

C
+

1 + gy
1 + gy − h

G

C
ρgy

]
∆yt−1 +

1 + ϕ

1− α
σaεat

+
1 + gy

1 + gy − h
G

C
σg(εgt − εgt−1) +

G

C

[
−h

1 + gy − h
+

1 + gy
1 + gy − h

ρg

]
∆gt−1 (4.7)

The second equation comes from the fact that the wage mark-up is a function of the state

variables and shocks in the model. In this version of the model the state variables are µwt−1, ∆yt−1,

∆gt−1, and εgt−1. Moreover, the shocks are εat, zt, νt, and εgt. Hence, we can write the following

expression,

µwt = γaεat + γξξt + γµµ
w
t−1 + γy∆yt−1 + γg∆gt−1 + γ0

εgσgεgt + γ1
εgσgεgt−1 (4.8)

where ξt is just a linear combination of preference shocks zt and monetary policy shocks νt. Equa-
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tions (4.7) and (4.8) form the following system,

∆yt

µwt

 = B



∆yt−1

µwt−1

∆gt−1

σgεgt

σgεgt−1


+ C

εat
ξt



where,

B ≡


h

1+gy−h
Y
C
−γy+ρgy

1+gy
1+gy−h

G
C

1+gy
1+gy−h

Y
C

+α+ϕ
1−α

1−γµ
1+gy

1+gy−h
Y
C

+α+ϕ
1−α

−h
1+gy−h

G
C
−γg+ρg

1+gy
1+gy−h

G
C

1+gy
1+gy−h

Y
C

+α+ϕ
1−α

1+gy
1+gy−h

G
C
−γ0εg

1+gy
1+gy−h

Y
C

+α+ϕ
1−α

−
1+gy

1+gy−h
G
C

+γ1εg
1+gy

1+gy−h
Y
C

+α+ϕ
1−α

γy γµ γg γ0
εg γ1

εg



C ≡

 σa
1+ϕ
1−α−γa

1+gy
1+gy−h

Y
C

+α+ϕ
1−α

− γξ
1+gy

1+gy−h
Y
C

+α+ϕ
1−α

γa γξ


Using the previous matrices it is straightforward to check that,

θg0 ≡
1+ϕ
1−ασa

1+gy
1+gy−h + α+ϕ

1−α
= c11 −

c21c12

c22

θg1 ≡
h

1+gy−h
Y
C + ρgy

1+gy
1+gy−h

G
C

1+gy
1+gy−h

Y
C + α+ϕ

1−α
= b11 −

b21c12

c22

θg2 ≡
1+gy

1+gy−h
G
C

1+gy
1+gy−h

Y
C + α+ϕ

1−α
= b14 −

b24c12

c22

θg3 ≡
−h

1+gy−h
G
C + ρg

1+gy
1+gy−h

G
C

1+gy
1+gy−h

Y
C + α+ϕ

1−α
= b13 −

b23c12

c22
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5 Proof of proposition 2

After detrending and loglinearizing, the baseline model with labor supply shocks can be summarized

by the following system,

−φππt − σiνt = Et∆mut+1 − Etπt+1 + σz (Etzt+1 − zt) (5.1)

∆mut = − 1 + gy
1 + gy − h

∆yt +
h

1 + gy − h
∆yt−1 (5.2)

πwt = −κwµwt + βEtπwt+1 (5.3)

µwt − µwt−1 = −
(

1 + gy
1 + g − h

+
α+ ϕ

1− α

)
∆yt +

h

1 + gy − h
∆yt−1 +

1 + ϕ

1− α
σaεat (5.4)

1

1− α
σaεat −

α

1− α
∆yt = πwt − πt (5.5)

(1− α)∆nt = ∆yt − σaεat (5.6)

µwt − µwt−1 = ϕ(∆lt −∆nt) + ∆χt (5.7)

where the last expression (5.7) comes from taking first differences and combining labor demand

from firms,

wt − pt =
1

1− α
at −

α

1− α
yt

and labor supply,

0 = wt − pt − ϕlt +mut − χt

Potential GDP growth in this model is the growth rate when ∆µwt is only explained by exogenous

shifts in labor supply due to changes in disutility of labor, that is, ∆µwt = ∆χt. Incorporating the

fact that ∆µwt = ∆χt into (5.4) and rearranging we get,

∆ypt =
Ω2

Ω1
∆ypt−1 +

Ω3

Ω1
εat −

1

Ω1
∆χt
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where,

Ω1 ≡
1 + gy

1 + gy − h
+
α+ ϕ

1− α

Ω2 ≡
h

1 + gy − h

Ω3 ≡
1 + ϕ

1− α
σa

Like in the previous cases, the SVAR is composed by equation (5.4) and an equation describing

µwt as a function of exogenous shocks and state variables:

µwt = γaεat + γzzt + γννt + γχ∆χt + γµµ
w
t−1 + γy∆yt−1

Defining now ξt = γz√
γ2
z+γ

2
ν+γ

2
χ

zt + γν√
γ2
z+γ

2
ν+γ

2
χ

νt +
γχ√

γ2
z+γ

2
ν+γ

2
χ

∆χt and γξ =
√
γ2z + γ2ν + γ2χ then,

µwt = γaεat + γξξt + γµµ
w
t−1 + γy∆yt−1 (5.8)

Now combining (5.4), (5.8) and after some algebra we find the same SVAR as the one in Proposition

1 in the paper,

∆yt

µwt

 = B

∆yt−1

µwt−1

+ C

εat
ξt


where,

B ≡

 h
1+gy−h

−γy
Ω1

1−γµ
Ω1

γy γµ

 C ≡

Ω3−γa
Ω1

−γξ
Ω1

γa γξ


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Using the matrices it is easy to check that,

Ω3

Ω1
= c11 −

c21c12

c22

Ω2

Ω1
= b11 −

b21c12

c22

−1

Ω1
=
c12

c22

6 Endogenous TFP: Bias and Estimation Method

In this section we propose and test a new method that might be helpful when the bias introduced

by TFP endogeneity is important. When TFP is affected by demand shocks ξt, the SVAR to be

estimated is the following,

∆yt

µwt

 = B

∆yt−1

µwt−1

+ C

ηaε̃at +
∑n2

j=n1
ηjξt−j

ξt

 (6.1)

Given the endogeneity problem, we propose a method using GMM to get consistent estimates. The

method uses estimated lagged ξt demand shocks as instruments. In particular, given a value for B,

we construct the objective function to be minimized in the following steps. Letting B̂ be a guess

for the estimate of B,

1. Get forecast errors,

u∆y
t

uµ
w

t

 =

∆yt

µwt

− B̂

∆yt−1

µwt−1

 (6.2)

2. Use a proxy variable and the forecast errors from the previous step to compute an estimate

for C, call it Ĉ. Use Ĉ to estimate structural shocks ξt,ε̂at
ξ̂t

 = Ĉ−1

u∆y
t

uµ
w

t


3. Construct moment conditions using the fact that TFP is only affected with a lag of n1
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quarters. Define

g∆y
jt = u∆y

t ξ̂t−j

gµ
w

jt = uµ
w

t ξ̂t−j

and

gt ≡
[
g∆y

1t , g
∆y
2t , . . . , g

∆y
n1−1,t, g

µw

1t , g
µw

2t , . . . , g
µw

n1−1,t

]′
The moment conditions are given as

ḡ ≡ 1

N − n1 + 1

N∑
t=1+n1−1

gt

4. Construct the efficient weighting matrix using the formula below,

W =

(
1

N − n1 + 1

N∑
t=1+n1−1

ĝtĝ
′
t − ḡḡ′

)−1

and create the objective function to be minimized in the following way,

J = ḡ′Wḡ

Minimization of function J provides a GMM estimator for matrices B and C. This method

performs better than OLS when the source of bias is large.7 However, we are interested in checking

the performance of both OLS and the described GMM methods in a realistic environment. To do

so we perform Monte Carlo simulations using as data generating process our full-sample baseline

estimation results for matrices B and C. We run 10,000 simulations of a length of 280 quarters (70

7For instance, compared to OLS, GMM is closer to the true parameter values for the case in which TFP is solely
determined by lagged demand shocks. Results available upon request.
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years) assuming that TFP growth is determined by,

εat = 0.999987 ε̃at + 0.005 ξt−5

which means that a negative one-standard-deviation demand shocks ξt reduces TFP by 0.5%

after 5 quarters. We calibrated this TFP process using the information contained in figures ??. In

the figures, demand shocks affect TFP with a lag of at least 5 quarters, and the maximum change

in TFP growth is −0.5%. The simulation results are shown in table 1.

Table 1: Testing Estimation Methods with Endogenous TFP

Parameter DGP OLS GMM
Average [p5, p95] Average [p5, p95]

b11 0.368 0.364 [ 0.269 , 0.455 ] 0.382 [ 0.242 , 0.549 ]
b21 -0.79 -0.79 [ -0.953 , -0.624 ] -0.786 [ -1.073 , -0.509 ]
b12 -0.004 -0.002 [ -0.009 , 0.009 ] -0.006 [ -0.033 , 0.026 ]
b22 0.976 0.972 [ 0.953 , 0.984 ] 0.968 [ 0.915 , 1.055 ]
c11 0.004 0.004 [ 0.003 , 0.005 ] 0.006 [ 0.003 , 0.018 ]
c21 0.008 0.009 [ 0.008 , 0.01 ] 0.014 [ 0.008 , 0.045 ]
c12 0.008 0.008 [ 0.007 , 0.008 ] 0.008 [ 0.007 , 0.008 ]
c22 -0.012 -0.012 [ -0.013 , -0.011 ] -0.012 [ -0.014 , -0.011 ]

Note: bij and cij for i, j = {1, 2} are elements of matrix B and C. The average values and 5 to 95 percentile

across the 10,000 simulations are displayed.

Two results emerge from the table. First, OLS estimates perform better than GMM ones in

this realistic case, especially B estimates. Second, the bias of OLS estimates is small and the true

parameter values are always between percentiles 5 and 95 for this estimation method.

7 Robustness analysis: Frisch elasticity

In this section we perform robustness analysis for the inverse of Frisch elasticity ϕ. In particular,

we present below the wage markup series, potential GDP, and output gap, for three different values

of ϕ: 1/3, 1 and 2. Recall that ϕ = 1 in our main analysis following Gaĺı et al. (2007). As shown

in figure 4, our estimates are robust to different values for ϕ.
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Figure 4: Robustness analysis: Frisch elasticity

(a) ϕ = 1/3

(b) ϕ = 1

(c) ϕ = 2

Note: potential GDP is derived from the baseline method using Fernald’s TFP as a proxy.
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8 Real-time estimation

In this section, we perform real-time analysis for our baseline SVAR estimation using Fernald (2012)

TFP series as a proxy. Specifically, we estimate the model as if we had data available at each release

date of Fernald (2012) TFP series. For this, we construct data that was available at those 61 release

dates – the earliest date is August 16, 2007 and the latest date is February 6, 2020 at which we get

the whole sample (1950Q1 - 2019Q4). Using this vintage data set, we estimate potential GDP at

each date and compare it with CBO’s estimate available at that time.8

Figure 5 shows estimated output gap (in blue) and CBO’s output gap (in red). The thicker and

darker lines represent estimates using most recent data. The two estimates differ starkly during

and after the Great Recession as displayed in panel (b). Our estimate points to larger output gaps

as data is revised and new data becomes available, whereas CBO suggests smaller output gaps. As

discussed, our estimate closely follows the revision and updates in TFP series. In contrast, CBO’s

estimate is revised and updated to be smaller as the economy recovers.

8The source of data is ALFRED [Link here]. In ALFRED, the vintage for Real personal consumption expenditures
per capita (A794RX0Q048SBEA) is available back to March 27, 2014. No vintage is available before that date. We
find those vintages directly from BEA Data Archive [Link here].
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Figure 5: Real-time estimation: Output Gap
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(a) Output Gap vs CBO
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(b) Output Gap during and after Great Recession

Note: Panel (a) shows the output gap estimated in real-time using baseline model with Fernald’s tfp series

(in blue). We also include CBO’s output gap for comparison (in red). The Panel (b) highlights different

behavior of the two estimates during and after the Great Recession. Estimates with thicker and darker lines

are the ones computed using more recent data.
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