Re-estimating Potential GDP: New Evidence on Output Hysteresis

Diego Anzoategui Min Kim

Rutgers

MMF Annual Conference September 2021

Motivation

- Potential GDP: key concept for policy decisions and forecasting
- Level of output absent price/wage rigidities (flexible-price output)
 - A counter-factual that requires estimation
- There is no consensus on the best method
- Coibion, Gorodnichenko and Ulate (2018):
 - Critical analysis of estimates from CBO, Fed, IMF, OECD
 - Their conclusion: estimates behave like HP trends
 - Need improvements in this area !
- A rough division of methods: DSGE-based vs non-DSGE-based

Motivation

- Methods that do not rely on structural models are generally simpler but have two main problems
 - 1. They depart from relevant theory \rightarrow estimates \neq flex-price output
 - Univariate Methods, methods using Blanchard and Quah (1989)
 - 2. Subject to the Lucas Critique
 - Production function approach (CBO's method)
- Current DSGE-based methods do not suffer from previous problems but,
 - 1. Estimates are model-specific
 - 2. Need to estimate model parameters \rightarrow identification issues

This Paper

- First contribution: new method getting strengths from both approaches
 - 1. DSGE-based
 - 2. As simple as any VAR-based method
 - 3. Does not require prior knowledge of all parameters
 - 4. Consistent with a set of DSGE models with different preferences/technologies/shocks
- Second Contribution: apply the method to the US
 - Contributes to the debate on whether potential GDP is affected by demand shocks

This Paper: Empirical Results

- New potential GDP series that
 - $1. \ \mbox{It}$ is highly correlated with CBO's estimates
 - 2. But large differences during and after the GR
 - 3. Result seems robust to different samples, methods, shock identification strategies
- Provide evidence supporting hysteresis hypothesis
 - Demand shocks seem to affect potential GDP

Related Literature

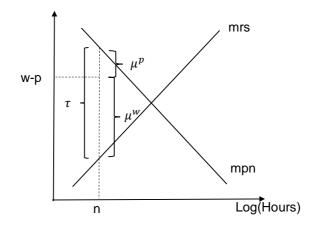
- Limitations of methods. Coibion, Gorodnichenko and Ulate (2018)
- **DSGE-based Potential Output Estimation.** Justiniano and Primicieri (2008), Basu and Fernald (2009), Gali, Smets and Wouters (2012) and many more..
- Simple Methods to Estimate Counterfactuals. Beraja (2019)
- Hysteresis hypothesis. Cerra and Saxena (2008), Blanchard et al. (2015), and Jordà et al. (2020)

- 1. A general picture of the method
- 2. Baseline method: Derivation and application to US data
- 3. Robustness and Extensions
- 4. Analysis: is potential output affected by demand shocks ?

A General Picture

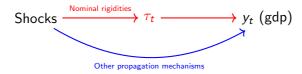
A General Picture

- NK DSGE models are RBC models with an endogenous labor wedge $\tau_t = mpn_t mrs_t$
- Remember, $\tau_t = (mpn_t w_t + p_t) + (w_t p_t mrs_t) = \mu_t^p + \mu_t^w$
 - μ_t^p : price markup, μ_t^w : wage markup



A General Picture

- au_t changes over time due to wage or price rigidities
- · Summarizes the propagation mechanism related to nominal rigidities



- Potential GDP: output only affected through blue channel
- Method kills the red arrows with the help of a structural model

Baseline Method

- Underlying model: textbook NK model
 - 1. Nominal wage rigidities (no price rigidities) $\rightarrow \tau_t = \mu_t^w$
 - 2. No capital: $Y_t = A_t N_t^{1-\alpha}$, Y_t : output, N_t : Hours
 - 3. TFP shocks: $\log A_t = g + \log A_{t-1} + \sigma_a \varepsilon_{at}$
 - 4. Preferences consistent with BGP:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t Z_t \left[\log \left(C_t - h \bar{C}_{t-1} \right) - \chi \frac{N_t^{1+\varphi}}{1+\varphi} \right]$$

External habits, Z_t : preference shock

5. Taylor Rule: $R_t = R_{ss} \Pi_t^{\phi_{\pi}} \exp(\sigma_i \nu_t)$

- What is potential output growth Δy_t^p in the model ?
- After some algebra ..

$$\Delta y_t^p = \theta_1 \Delta y_{t-1}^p + \theta_0 \varepsilon_{at}$$

where,

$$\theta_0 \equiv \frac{\frac{1+\varphi}{1-\alpha}\sigma_{\mathbf{a}}}{\frac{1+g}{1+g-h} + \frac{\alpha+\varphi}{1-\alpha}} \quad \theta_1 \equiv \frac{\frac{h}{1+g-h}}{\frac{1+g}{1+g-h} + \frac{\alpha+\varphi}{1-\alpha}}$$

• Simple way of recovering θ_0 , θ_1 and ε_{at} !

Proposition 1: θ_0 and θ_1 can be estimated from the SVAR

$$\begin{bmatrix} \Delta y_t \\ \mu_t^w \end{bmatrix} = \mathbf{B} \begin{bmatrix} \Delta y_{t-1} \\ \mu_{t-1}^w \end{bmatrix} + \mathbf{C} \begin{bmatrix} \varepsilon_{at} \\ \xi_t \end{bmatrix}$$

where ξ_t is a weighted average of demand shocks. In particular,

$$heta_0 = c_{11} - rac{c_{21}c_{12}}{c_{22}}$$
 $heta_1 = b_{11} - rac{b_{21}c_{12}}{c_{22}}$

And ε_{at} can be calculated using forecast errors and C Derivation

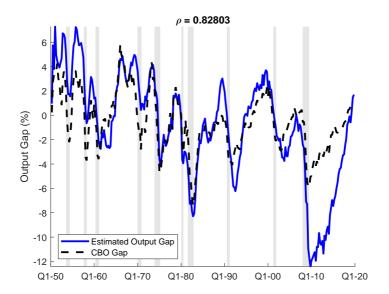
- Method does not change with the following modifications to the model:
 - 1. Other preferences
 - 2. Other production functions in labor
 - 3. Adding wage markup shocks
 - 4. Other monetary rules: interest rate, money growth, etc
 - 5. Adding capital utilization (with capital stock in fixed supply) $Y_t = A_t (U_t \bar{K})^{\alpha} N_t^{1-\alpha}$
 - 6. Other expectation formation assumptions
- Tested method with Monte Carlo simulations and it works for small samples More

Method: Estimation Details

$$\begin{bmatrix} \Delta y_t \\ \mu_t^w \end{bmatrix} = \mathbf{B} \begin{bmatrix} \Delta y_{t-1} \\ \mu_{t-1}^w \end{bmatrix} + \mathbf{C} \begin{bmatrix} \varepsilon_{\mathit{at}} \\ \xi_t \end{bmatrix}$$

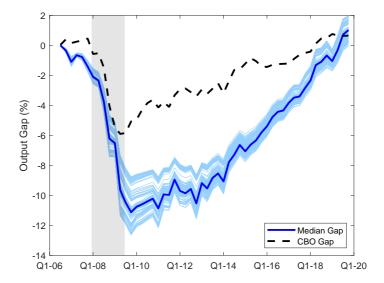
- 1. Estimation of \boldsymbol{C}
 - SVAR-IV as in Stock and Watson (2008) Baseline IV: Fernald's TFP
 - Why not LR restrictions? A: not so robust to changes in samples or detrending - Fernald (2007)
- 2. How to get a series for μ_t^w ?
 - Follow Gali et al. (2007) and labor wedge lit: assume log utility and Frisch Elast = 1
 - Highly correlated with other measures of business cycle like unemployment More

Baseline Method: Gap (1950q1-2019q4)



Series of output and markups detrended using a 3rd order polynomial before VAR estimation.

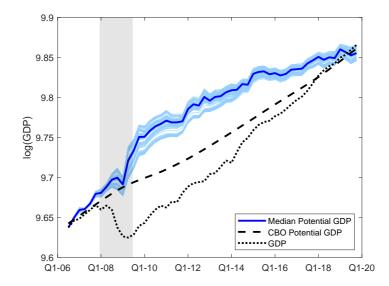
Baseline Method: Gap



Light blue lines represent different starting quarters in the sample: from 1950q1 to 1990q1. Last quarter in every sample is 2019q4. Series of output and markups detrended using a 3rd order polynomial before VAR estimation.

Baseline US Potential GDP Estimates, IV: TFP

LR



Light blue lines represent different starting quarters in the sample: from 1950q1 to 1990q1. Last quarter in every sample is 2019q4. Series of output and markups detrended using a 3rd order polynomial before VAR estimation.

Baseline US Potential GDP Estimates

- Estimated series highly correlated with CBO's
- But with a stark difference during and after the GR
- It points to an increase in Y^p during the crisis, but poor potential growth afterwards
- Related to Fernald's TFP evolution during and after the crisis More

 Identification Real-time

Extensions and Robustness

Extensions and Robustness

- 1. Baseline Method with other IVs More
- 2. Adding price rigidities More
- 3. Adding government spending More
- 4. The issue of endogenous capital More

Analysis: Is Y^p affected by demand shocks ?

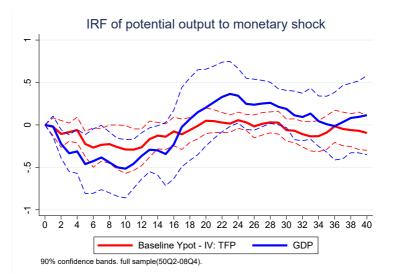
Y^p response to Demand Shocks

- Current debate on whether hysteresis is quantitatively relevant
- Hysteresis hypothesis claims that demand shocks can have long lasting impacts on GDP
- In other words, TFP and potential GDP can react to demand shocks
- We provide new evidence supporting this view
 - Estimate IRFs of Y^p to demand shocks
 - Use local projection methods as in Jordà (2005):

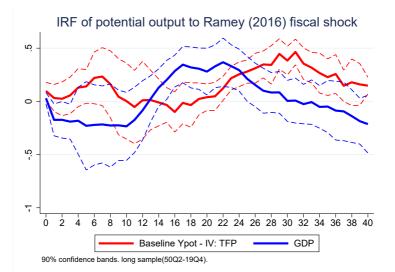
$$\log\left(Y_{t+j}^{p}\right) = \beta_{0} + \beta_{j}\epsilon_{t} + \text{Controls} + u_{t} \qquad j \ge 0$$

 β_j : impact of shock after *j* quarters

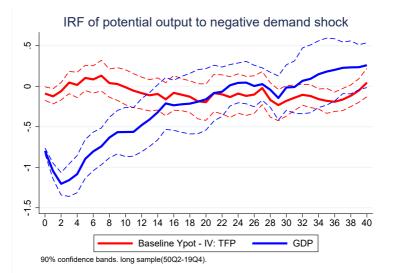
Y^p response to Monetary Shocks



Y^p response to Defense Spending Shocks



Y^p response to demand shock ξ_t



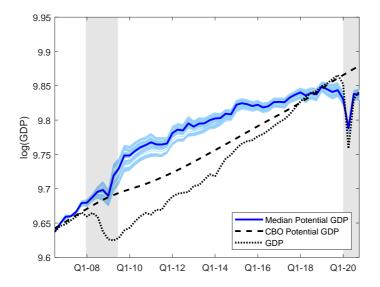
Y^p response to Demand Shocks

- Evidence indicating that demand shocks affect both Y and Y^p
- Similar results for other estimates of Y^p
- Y^p tends to be affected with a lag

Conclusion

- Simple method to compute potential GDP
- Method can be adapted to many more modifications in the underlying model
- Results:
 - 1. Estimated potential GDP series highly correlated with CBO's but important deviation during and after GR
 - 2. Evidence indicating that demand shocks affect potential GDP

COVID-19



Appendix

Endogenous Capital

- Method is based on a model without endogenous capital
- A more general model would assume $Y_t = A_t (U_t K_t)^{\alpha} N_t^{1-\alpha}$ where K_t is endogenously determined
- How costly is to assume capital is exogenously given ?
- We show that the cost is low ! Especially if short-run wealth effects are not important

 Back

Endogenous Capital

- Strategy:
 - 1. DGP: Two versions of Smets and Wouters (2007) with and without short-run wealth effects
 - 2. Simulate model 10,000 times for 160 quarters
 - 3. Estimate potential output using our method and compare with model
- Results (median values):

	Model Δy_t^p	Estimated Δy_t^p
(A) Original SW Model		
Standard Deviation	0.751	0.788
Minimum	-2.029	-2.126
Maximum	2.033	2.127
Correlation with SW Δy_t^p		0.92
(B) SW without short-run wealth effects		
Standard Deviation	1.155	1.079
Minimum	-3.117	-2.920
Maximum	3.123	2.929
Correlation with SW Δy_t^p		0.99

Extension: Government Spending

- We add a non-permanent shock that might affect potential GDP
- Why ?
 - Way to show that our method can estimate potential GDP series that are affected by non-permanent shocks
 - Big spending shocks in our sample: US wars
- Introduce fiscal authority that collects lump-sum taxes and follows rule:

$$g_t = \rho_g g_{t-1} + \rho_{gy} y_{t-1} + \sigma_g \varepsilon_{gt}$$

where g_t and y_t are gov't spending and GDP (in log-dev from SS)

• Rest of model is similar to Baseline

Extension: Government Spending

• In this new model potential GDP growth is given by

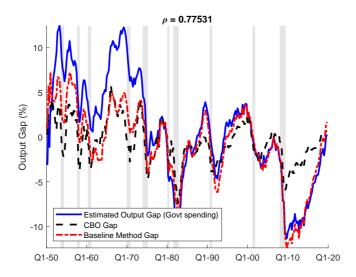
$$\Delta y_t^{p} = \theta_3^{g} \Delta g_{t-1}^{p} + \theta_2^{g} \sigma_g \Delta \varepsilon_{gt} + \theta_1^{g} \Delta y_{t-1}^{p} + \theta_0^{g} \varepsilon_{at}$$

- Now potential GDP is not only a function of TFP
- Government spending shocks can affect potential GDP through labor supply wealth effects
- Paper shows a straightforward way of estimating θ^{g} 's

Back

Extension: Government Spending

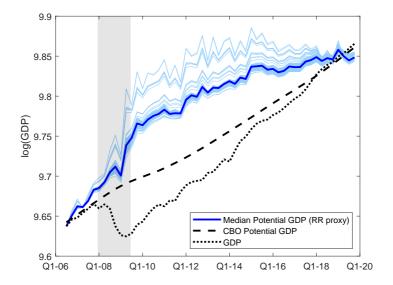
Figure: Including Government Spending: Output Gap



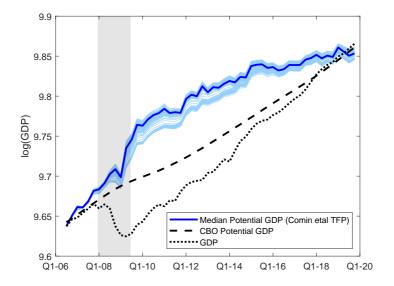
Robustness: other IVs

- We check our results using other IVs to estimate the SVAR
- We use:
 - Comin et al. (2020) TFP measure as an IV for ε_{at}
 - Romer and Romer (2004) monetary policy shocks as an IV for ξ_t
- Results are similar: predict an increase in potential GDP during the GR and a poor growth afterwards

Baseline Method: RR monetary shocks



Baseline Method: Comin et al. (2020) TFP



- Previous method assumes flexible prices
- At odds with micro evidence
 - Avg freq of price changes: 3 quarters- Nakamura and Steinsson (2008)
- However, μ^w_t strongly countercyclical and μ^p_t aclyclical or mildly countercyclical in the data
 - μ_t^p plays a secondary role affecting the labor wedge τ_t
 - Main reason for not including price rigidities in baseline method

Proposition 2:

With a model with price rigidities, θ_0 and θ_1 can be estimated from the system

$$\begin{bmatrix} \Delta y_t \\ \tau_t \end{bmatrix} = \mathbf{B} \begin{bmatrix} \Delta y_{t-1} \\ \mu_{t-1}^{w} \\ \mu_{t-1}^{p} \end{bmatrix} + \mathbf{C} \begin{bmatrix} \varepsilon_{at} \\ \xi_t \end{bmatrix}$$

where ξ_t is a weighted average of demand shocks. In particular,

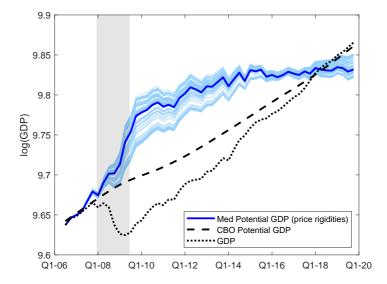
$$\theta_0 = c_{11} - \frac{c_{21}c_{12}}{c_{22}}$$
 $\theta_1 = b_{11} - \frac{b_{21}c_{12}}{c_{22}}$

And ε_{at} can be calculated using forecast errors and **C** (Back)

- Method is very similar, but not a SVAR anymore
- Need series of price markups μ_t^p

• Calculated using
$$\mu_t^p = mpn_t - (w_t - p_t)$$

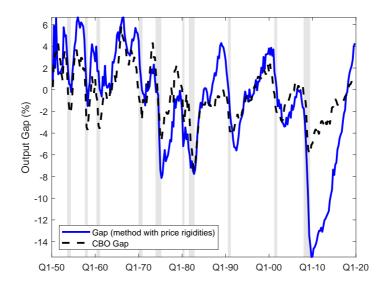
US Potential GDP Estimates (Price Rigidities)



Light blue lines represent different starting quarters in the sample: from 1950q1 to 1990q1. Last quarter in every sample is

2019q4. Series detrended using a 3rd order polynomial.

Price Rigidities: Gap



- Similar pattern as before: poor potential GDP growth after GR
- Jump in productivity during recession more important than baseline case
- Overall, again, a different picture from CBO's estimates

Baseline Method: Monte Carlo Simulations

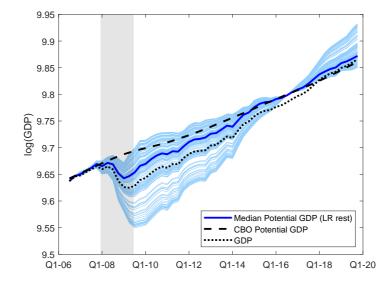
Back

The table below reports median values of 10,000 simulations (sample size: 70*4 quarters)

	Model Δy_t^p	Estimated Δy_t^p
Standard Deviation	0.578	0.575
Minimum	-1.620	-1.614
Maximum	1.622	1.614
Correlation with Model Δy_t^p		0.997

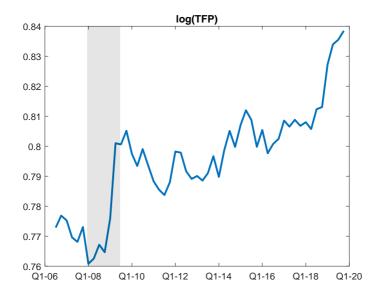
Model parameters set to standard values in literature. SD of shocks are set to match the following moments: (i) SD of Fernald's TFP, (ii) SD of wage markup, (iii) SD of Fed Funds rate and (iv) correlation of Fed Funds rate with GDP growth.

Baseline Method: LR restrictions

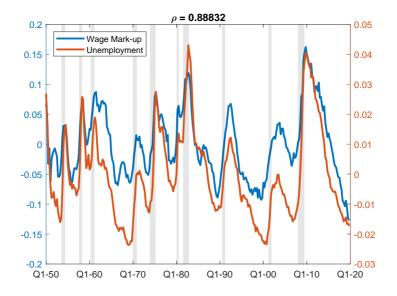


Light blue lines represent different starting quarters in the sample: from 1950q1 to 1990q1. Last quarter in every sample is 2019q4. Series detrended using a 3rd order polynomial.

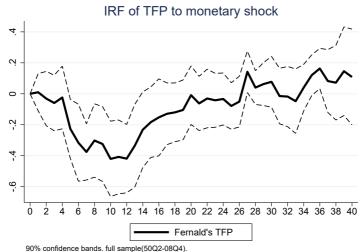
TFP



Wage Markups vs Unemployment



TFP



Method: SVAR derivation

Back

• Start from the fact that μ_t^w is a function of the states and shocks

$$\mu_t^{\sf w} = \gamma_{\sf a} \varepsilon_{\sf at} + \gamma_{\sf z} z_t + \gamma_{\nu} \nu_t + \gamma_{\mu} \mu_{t-1}^{\sf w} + \gamma_{\sf y} \Delta y_{t-1}$$

where the $\gamma \, {\rm 's}$ are function of deep parameters of the model

• Define
$$\xi_t = \frac{\gamma_z}{\sqrt{\gamma_z^2 + \gamma_\nu^2}} z_t + \frac{\gamma_\nu}{\sqrt{\gamma_z^2 + \gamma_\nu^2}} \nu_t$$
 and $\gamma_{\xi} = \sqrt{\gamma_z^2 + \gamma_\nu^2}$, thus

$$\mu_t^w = \gamma_a \varepsilon_{at} + \gamma_{\xi} \xi_t + \gamma_\mu \mu_{t-1}^w + \gamma_y \Delta y_{t-1}$$
(1)

· Second, use the wage mark up equilibrium condition

$$\mu_t^w - \mu_{t-1}^w = \frac{1+\varphi}{1-\alpha} \sigma_a \varepsilon_{at} - \frac{\alpha+\varphi}{1-\alpha} \Delta y_t + \Delta m u_t \tag{2}$$

• Equations (2) and (1) form the SVAR

Proxy SVAR

Back

Forecast errors from estimating VAR satisfy

$$\begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} = \mathbf{C} \begin{bmatrix} \varepsilon_{at} \\ \xi_t \end{bmatrix}$$

- Letting ${\bf V}$ be the Var-Cov matrix of forecast errors, then ${\bf V}={\bf C}{\bf C}'$
 - 4 parameters \rightarrow need 4 constraints
 - V = CC' provides only 3
- Proxy SVAR:
 - Assume we have a proxy for TFP shocks $\omega_t = \gamma \varepsilon_{at} + \epsilon_t$
 - ϵ_t measurement error, $\gamma \neq 0$
 - Then, $\frac{\mathbb{E}(u_{1t}\omega_t)}{\mathbb{E}(u_{2t}\omega_t)} = \frac{c_{11}}{c_{21}}$ provides an additional constraint

Identification

- Why TFP and potential GDP increase during the great recession?
- Need to clarify how our method identifies TFP shocks
- From SVAR, GDP growth and wage mark-up forecast errors $(u_t^{\Delta y}, u_t^{\mu^w})$ are linear combinations of structural shocks:

$$\begin{bmatrix} u_t^{\Delta y} \\ u_t^{\mu^w} \end{bmatrix} = \mathbf{C} \begin{bmatrix} \varepsilon_{at} \\ \xi_t \end{bmatrix}$$

• After some algebra

$$u_t^{\Delta y} = \frac{c_{12}}{c_{22}} u_t^{\mu^w} + \theta_0 \varepsilon_{\text{at}}$$

Identification

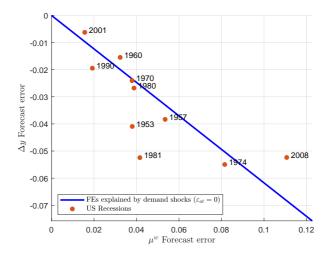
$$u_t^{\Delta y} = \frac{c_{12}}{c_{22}} u_t^{\mu^w} + \theta_0 \varepsilon_{at}$$

- $\frac{c_{12}}{c_{22}}$ < 0: absent productivity shocks there should be a negative relationship between growth and wage mark-ups forecast errors
- Relationship reminiscent of Okun's Law
- In a "demand-driven" recession the economy should move along this downward sloping line
- Any deviation from this relationship is explained by productivity shocks

Identification

• Taking a look at the US recessions..

Figure: Identification of productivity shocks



Real-time estimation

