- Min Kim
- 3rd year PhD student
- email: min.kim@rutgers.edu
- office hours: 13:30-14:30 on Tuesdays at 423 in NJ hall
- will do 16 lectures, while professor is on parental leave
- We will cover
- chapter 4: Savings - Investment diagram
- chapters 9-13: Aggregate Demand - Supply framework

Let's start with warm-ups

Quick review

\square In economics, we like to use a function to describe the relationships between the variables of interest

$$
Y=f(X)
$$

- variable Y moves with variable X through $f(\cdot)$
\square For example, a demand curve Q^{d} :

$$
Q=a-b P \text { for some } a, b>0
$$

- b : responsiveness to the price change
- a : income, expectations, preferences, prices of other goods, etc.

Quick review

\square The graph for the inverse demand curve $P=\frac{a}{b}-\frac{1}{b} Q$ is

\square Two concepts:

- movements along the curve
- shifts of the curve

Movements along the curve

\square How does Q change as P changes?

- When the price increases from P_{1} to P_{2}, the quantity demanded decreases, from Q_{1} to Q_{2}

Shifts of the curve

\square What happens if a changes?

- Suppose that there is an increase in income so that a increases

- the curve shifts outwards parallelly, assuming it is a normal good

Example: hamburger, ketchup, and chicken

- Suppose that the price for hamburger rises
- What happens to the demand for chicken (substitute good) and the demand for ketchup (complementary good)?

- the quantity demanded for hamburger decreases (along the curve)

Example: hamburger, ketchup, and chicken

- Demand for chicken (substitute good) increases

- the demand curve shifts outwards
- this can be interpreted as a increases

Example: hamburger, ketchup, and chicken

- Demand for ketchup (complementary good) decreases

- the demand curve shifts downwards
- this can be interpreted as a decreases

What we have done so far

- What should we look at to know about the economy?
- what are the important macro variables?
\square Among others, main interest is real GDP, Y
- that summarizes how well the economy is doing
\square Chapter 2: How can we measure Y ?
口 total production $=$ total expenditure $=$ total income
\square Chapter 3: What determines Y?
- assuming the aggregate production function: $Y=A K^{b} L^{1-b}$
\square Chapters 6 and 7: How does Y grow over time?
- in the long-run, the economy converges to the steady state k^{*}, which depends on A, b, n, δ and s
- assuming $S=s Y$ for some fixed saving rate s and $I=S$

What is missing?
a economy does not work mechanically

- $S=s Y$ is a strong assumption and how $I=S$?
- agents make decisions and interact in the markets
- households/firms/government/rest-of-world
\square We assume that the output is fixed $Y=F(\bar{K}, \bar{L})=\bar{Y}$
- and we will focus on goods and financial markets

Flow diagram

- What is the (general) equilibrium of the economy?

口 supply=demand in all markets (goods and financial markets)

- Walras' law says
- "if all other markets in an economy are in equilibrium, then that specific market must also be in equilibrium"
\square We will look for the equilibrium in goods market

$$
Y=C+I+G+N X
$$

- so that financial market is also in equilibrium

Outline of Chapter 4

\square Consumption, saving, and investment

- the uses of saving identity
\square Equilibrium in three cases:
- a closed economy
- a small open economy
- a large open economy
\square Some exercises
- the "global savings glut"

Consumption

\square Consumption expenditure depends on many factors
\square We separate these factors into three categories:

$$
\begin{gathered}
C=\bar{C}+C(Y-T, r) \\
+
\end{gathered}
$$

- where:

$$
\begin{aligned}
Y-T & =\text { disposable income } \\
r & =\text { real interest rate }
\end{aligned}
$$

$$
\bar{C}=\text { autonomous consumption }
$$

(i.e., everything else)

Recall from Chapter 2

\square A nominal interest rate is the cost of borrowing, or the price paid for the rental of funds

- if you borrow $\$ 100$ at 2\% interest for one year
- As a borrower, you will have to pay back \$102
\square The real interest rate is an interest rate adjusted for changes in prices, measures purchasing power
- suppose now that the expected inflation is 2%
- dollars will be worth 2% less, so the real cost of borrowing (or the real interest rate) is 0\%.
- the amount of goods you can buy with $\$ 100$ today is the same as the amount you can buy with $\$ 102$ next year
- no change in terms of purchasing power

Why does C depend negatively on r ?

$\square r$ is a relative price

- current consumption vs. future consumption
\square Example: buying a new TV today vs. in one year
- suppose price is $\$ 500$ in both years (no inflation)
- current cost of TV today is $\$ 500$
a what is the current cost of TV in one year?
- how much you need to save today?

Let x be the amount you need to save

$$
x(1+r)=\$ 500 \quad \text { or } \quad x=\frac{\$ 500}{1+r}
$$

when $r=1 \% \quad \Rightarrow \quad x=\frac{\$ 500}{1.01} \approx \$ 495$
When r increases to $10 \% \quad \Rightarrow \quad x=\frac{\$ 500}{1.10} \approx \$ 455$
\Rightarrow current consumption is relatively more expensive

From consumption to saving

\square Private saving is disposable income minus consumption

$$
S_{P}=Y-T-C
$$

\square Govt. saving is tax revenue minus govt. expenditure

$$
S_{G}=T-G
$$

National saving is S_{P} plus S_{G}

$$
S=Y-C-G
$$

- Output: $Y=F(\bar{K}, \bar{L})=\bar{Y}$
\square Fiscal policy is exogenous: $G=\bar{G}$ and $T=\bar{T}$
- it does not depend on r
- Consumption: $C=\bar{C}+C(Y-T, r)$
\square Then:

$$
S=\bar{Y}-\bar{C}-C(\bar{Y}-\bar{T}, r)-\bar{G}
$$

a an increasing function of the real interest rate r

Graphically,

National saving is:

$$
S=\bar{Y}-\bar{C}-C(\bar{Y}-\bar{T}, r)-\bar{G}
$$

Investment

\square Recall: investment is expenditure on currently produced capital goods ...

- ... that are used to produce other goods over an extended period of time
\square Assume:

$$
I=\bar{I}+I(\underline{r})
$$

where

$$
\bar{I}=\text { autonomous investment }
$$

\square Why is investment decreasing in r ?
\square Example: firm is considering buying a new machine

- costs \$100,000
- will produce benefit of $\$ \mathbf{5}, \mathbf{0 0 0}$ per year (forever)

Q: should the firm buy the machine?
Suppose firm can borrow $\$ 100,000$ at interest rate r

- annual interest cost $=(r) \times \$ 100,000$
- If $r=10 \% \Longrightarrow$ annual cost $=\$ 10,000 \Longrightarrow$ do not buy

口 if $r=3 \% \quad \Longrightarrow$ annual cost $=\$ 3,000 \Longrightarrow$ buy

- an decreasing function of the real interest rate r

Graphically,

Investment is:

$$
I=\bar{I}+I(r)
$$

Relating saving to investment

\square National saving:

$$
S=Y-C-G
$$

\square Imposing the equilibrium condition in goods market

$$
Y=C+I+G+N X
$$

Then

$$
S=(C+I+G+N X)-C-G
$$

or

$$
S=I+N X
$$

the "uses of saving" identity

Implications

- Use of national savings (S)
- Invest in capital goods (I)
- Sell goods to foreigners for foreign currency assets (NX)
- $S-I$ is called net capital outflow
\square Goods market is in equilibrium if $S=I+N X$
- by Walras' law, financial market is also in equilibrium
\square If $S \neq I+N X$, there will be some "adjustments"
- so that the economy is in equilibrium

Adding up

\square Rewrite our identity as

$$
S=I+N X \quad \Rightarrow \quad S-I=\text { Export - Import }
$$

\square This identity holds for every country in equilibrium:

$$
\begin{aligned}
S_{U S}-I_{U S} & =\text { Export }_{\text {US }}-\text { Import }_{\text {US }} \\
S_{\text {Canada }}-I_{\text {Canada }} & =\text { Export }_{\text {Canada }}-\text { Import }_{\text {Canada }} \\
S_{\text {Mexico }}-I_{\text {Mexico }} & =\text { Export }_{\text {Mexico }}-\text { Import }_{\text {Mexico }}
\end{aligned}
$$

\square Adding across all countries in the world:

$$
\sum_{i} S_{i}-\sum_{i} I_{i}=\sum_{i} \text { Export }_{i}-\sum_{i} \text { Import }_{i}
$$

\square Repeating:

(every good exported from one country is imported to another)
\square Result:

$$
\sum_{i} S_{i}-\sum_{i} I_{i}=0 \quad \text { or } \quad \begin{gathered}
\text { total } \\
\text { saving } \\
\text { in the } \\
\text { world }
\end{gathered}=\begin{gathered}
\text { total } \\
\text { investment } \\
\text { in the } \\
\text { world }
\end{gathered}
$$

Outline of Chapter 4

- Consumption, saving, and investment
- the uses of saving identity
\square Equilibrium in three cases:
- a closed economy
- a small open economy
- a large open economy
\square Some exercises
- the "global savings glut"

1) A closed economy

\square Suppose there is no international trade

- then $N X$ must equal zero
- and $S=I$ must hold in equilibrium
\square Two interpretations:
- we are looking at an economically closed country
- we are looking at the world as a whole
\square Real interest rate r is determined by local forces
- supply (of saving) and demand (for investment)

Equilibrium in a closed economy

Increase in government spending ($\bar{G} \uparrow$)

will decrease national saving $\mathrm{S}=\bar{Y}-\bar{C}-C(\bar{Y}-\bar{T}, r)-\bar{G}$

Increase in government spending ($\bar{G} \uparrow$)

will decrease national saving $\mathrm{S}=\bar{Y}-\bar{C}-C(\bar{Y}-\bar{T}, r)-\bar{G}$

- Equilibrium level of saving and investment fall
- this is called crowding out effect
- criticism to fiscal stimulus package by the government

